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B E H A V I O R  O F  A G A S  B U B B L E  IN  A V I S C O U S  

O S C I L L A T I N G  L I Q U I D  I N  T H E  P R E S E N C E  O F  G R A V I T Y  

V.  L. S e n n i t s k i i  UDC 532.529 

The phenomenon of the predominantly unidirectional motion of a gas bubble in a vibrating liquid has 
previously been discovered theoretically and demonstrated experimentally by the author [1, 2]. The essence 
of this phenomenon is as follows. There is a closed vessel filled with a liquid containing a gas bubble. Gravity 
is absent. The vessel accomplishes specified periodic oscillations and is deformed in a specified manner. As a 
consequence, the gas bubble moves in a given direction (in the positive or negative direction of the axis along 
which the vessel oscillates, depending on the oscillations and deformations of the vessel). 

The existence of this phenomenon, which is interesting in itself, suggests, in particular, that  the behavior 
of the gas bubble can be unusual in the presence of gravity because of the oscillations and deformations of 
the vessel. 

A similar effect [3] can also occur for which the following factors are critical: the presence of gravity 
and the condition that  the liquid with a gas bubble is placed in an open vessel or a similar liquid fills a closed 
vessel only partially. When the vessel oscillates vertically, the bubble neither rises nor sinks at a specific depth, 
rises slower at a smaller depth, or sinks at a larger depth. 

In the present paper, the problem of the motion of a gas bubble in a viscous incompressible oscillating 
liquid in the presence of gravity is considered. As in [1], a bubble-containing liquid fills a closed vessel which 
oscillates and is subjected to deformation. Unlike as in [.1], the solution for not too small oscillations and 
deformations of the vessel is obtained, but the Reynolds number is assumed to be small. In particular, it is 
shown that the gas bubble can either rise faster or slower, neither rise nor sink, or sink under the action of 
the oscillations and deformations of the vessel. An important  circumstance is that  the realization of all these 
types of motion of the gas bubble is not restricted by the condition of bubble location at a definite depth. 

1. A bubble is in a viscous incompressible liquid which is bounded from outside by the surface of a 
closed vessel formed by deformable solid walls and by absolutely solid walls which are rigidly connected to 
each other. The vessel accomplishes the prescribed periodic (with period T) translational oscillations along 
the z axis relative to an inertial rectangular coordinate system X, Y, Z. Simultaneously, the vessel is deformed 
in a specified manner (it compresses and expands). There is a constant gravity [the acceleration of gravity 
g = (0 ,0 , -g ) ,  g >/0]. The location of the bubble relative to the coordinate system X, Y, Z is characterized 
by the radius vector 

12XyZ 

where R = ( X ,  Y, Z ) ,  ~ x Y z  is the region occupied by the gas, and Q is tile gas volume (S is the radius vector 
of the center of inertia of the bubble). The liquid flow is considered relative to the rectangular coordinate 
system X1 = X - S x ,  X2 = Y - S y ,  and X3 = Z - S z  ( S x ,  S y ,  and S z  are, respectively, the X, Y, and 
Z components of the vector S). The smallest distance from the bubble to the vessel walls is large compared 
with the largest size of the bubble; therefore, the vessel walls are assumed to be infinitely far from the bubble. 
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The velocity V of the liquid flow is subject to the condition 

V , - , O k  dS for X • + X  2 + X g - - + ~ ,  
dt 

O 0  

where t is time, 0 = Real ~ Urne 2rn'dt/T (Urn are constants), and k = (0, O, 1) (Uk is the velocity of the 
rn-"~ I 

oscillatory motion of the vessel relative to the coordinate system X, Y, Z). Accordingly, the pressure P in 
the liquid is subjr to the condition 

P ~ - p  7 / -  + g x3  + P for + + 

where p is the density of the liquid and/5  is a function of t. The dependence of /5  on t is determined by how 
the vessel is deformed. It is assumed that 

/5 = P0 + Real ~ Prne 2rn~rit/T, 
lrn~-. 1 

where P0 (P0 /> 0) and Prn are constants. The flow of the liquid is not dependent on the initial conditions. 
In the absence of gravity and oscillations and deformations of the vessel [for g = 0 and Um = Pm = 0 

(m = 1, 2, . . .)], the bubble is a ball ~fX 2 + X2 2 + X  2 ~< A0 (A0 is a constant), V = 0, and P = P0. The 
pressure Pg and volume of the gas are related by the adiabatic equation 

pgQ-r = PgoQ'~, 

where 7 is the adiabatic exponent, Pgo = 19o + 2o'/Ao (o" is the coefficient of surface tension), and Q0 = 
(4~/3)A~. It is necessary to reveal the motion of the bubble relative to the coordinate system X, Y, Z, i.e., 
to find the dependence of S on t. 

Assume that r = t / T ,  x l  = X1 /Ao ,  x2 = X 2 / A o ,  x3 = Xa /Ao ,  r = ( x l , x 2 , x 3 ) ,  r = [rl, F is the 
surface bounding the region f~xlx2x3 occupied by the gas (the free boundary of the region occupied by the 
liquid), H is the average curvature of F, r i = A o H  - 1, n is a unit external normal to F, E is the velocity of 
F in the direction of n, ~ = T=./Ao,  v = (vi) = T V / A o ,  p = T 2 ( p  - Po) / (pA2) ,  w = ( 1 / A o ) d S / d r ,  u is the 
kinematic coefficient of liquid viscosity, Re = Azo/(uT) is the Reynolds number, P is the stress tensor in the 
liquid, I = (Iij) is the unit tensor, p = (Pij) = T2( P + PoI)/(P A2) [Pij = - p l i j  + (1 /Re) (Ov i /Oz  I + Ovj/Ozi)],  

/5 is the largest value of 1t 5 - Pol, /5 = (/5 - Po)//5 = Real ~ prne 2rnxir, 0 is the largest value of It)l, 
rn----1 

oo 

fi = 0 / 0  = Real y~  ume zrnrir, ct = (0,0, a)  = - T 2 g / a o ,  e = U T / A o ,  K = P T / ( p u ) ,  A = a T 2 / ( p Z ~ ) ,  
r n = l  

tz = PgoT2/(pA2) ,  and pg = T2(pg - Pgo)/(pA])  = tz(Q'~/Q "t - 1). 
The equation of the surface F, the Navier-Stokes and continuity equations, and the conditions that 

must be satisfied on F for r ---* cr have the following form: 

x = 0  (1.1) 

(X < 0 in f~lx2x3, X > 0 outside of F/zl~2~3); 

Ov 1 dw 
0--7 + (v-  V)v + Vp Re Av  + -~T + O~ = 0; (1.2) 

V .  v = 0; (1.3) 

n .  v - ~ = O, n .  p + (pg - -  2Aq)n = 0 on F; (1.4) 

v - ~ c f i k - w ,  p ~ -  e-~T+o~ x 3 q - ~ e  p for r---~cr (1.5) 
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The following relation also must  be satisfied: 

f f f  rdxldx2dx3 = 0 (1.6) 
NXlX2Z3 

(the center of inertia of the bubble coincides with the origin of coordinates z l ,  x2, x3). 
2. Problem (1.1)-(1.6) for a = 0 (g = 0) was formulated and solved approximately in [1]; the expansions 

of X, v,  p, and w for ~e = ( K / R e )  ~ 0, e ---* 0, and constant  xl ,  x2, x3, v, Re, A, and p were considered in that  
paper as well. Another  approach to the s tudy of problem (1.1)-(1.6) is given below, where the expansions of 
X, v,  p, and w for Re ---* 0 and constant  xl ,  x2, x3, ~', a e, K,  ~, and # are considered. 

Let us assume that ,  for Re --~ 0, 

1 
X "~ X(0) + ReX(l), v ,-, v(0 ) + Re vii),  P "~ ~eP(0) + P(D, w ,-, w(0 ) + Rew(D.  (2.1) 

In accordance with (1.1)-(1.6) and (2.1), in the L th  (L = 0 and 1) approximation we have 

X(0) + LRex(1) = 0, (2.2) 

which is the equation of the surface F(L) bounding the region f~(L) occupied by the  gas; 

L [ 0v(~ + dw(~ a ]  (2.3) 
V p ( L ) - - A V ( L ) = - -  t ~  ( V ( o ) - V ) V ( o ) + ~ +  ; 

V-V(L ) = 0; (2.4) 

[ )l ]_-0 lim Re-L(n(L) v - - ( ( L  ) r(Li 
Re-*O 

(2.5) g 

lim ~ReI-L[n(L) �9 p + (Pg(L) -- 2Ar/(L))n(L)] r(L, ~ ---- 0; 
Re-*O 

v(L ) ~ (1 - L)(c,~k - W(o)) - -Lw( , ) ,  (2.6) 

P ( L ) " ~ ( 1 - L ) K i ~ - L  e~rr  + a  za for r ~ ;  

f f  rdxldx2dza = O, (2.7) 

where n(L), r/(L) , ~(L), and Pg(L) are, respectively, n, r/, ~, and pg for F = F(L ). 
Let L = 0. For the zero approximation,  the bubble volume changes under the action of deformations 

of the vessel; the bubble, however, cannot move relative to the liquid being at infinity because of the vessel's 
oscillations and the influence of gravity. The  bubble is a ball r ~< 1 + a(0 ) whose center moves with velocity Uk 
relative to the coordinates X,  Y, Z. The  liquid flow is symmetr ical  with respect to the origin of coordinates 
xl,  x2, x3. Relation (2.7) is satisfied. Problem (2.2)-(2.7) has the solution 

Here w(o ) = e5 e nd 

X(0) = r - 1 - a(0); (2.8) 

da(o) r (2.9) 
v(0 ) = ( l + a ( 0 ) )  2 dT r "~; 

P(0) = KiS; (2.10) 

w(0 ) = w(0)k. (2.11) 

T 

(2.12) 
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I (C > 0). The constant C is not determined in the consideration where 7-. is a constant and C = 1 + a(0) r=r. 
of the zero approximation. 

Let L = i. Let us assume that in the first approximation, the bubble is a ball r ~< i + a(0 ) + Rea0) .  
Relation (2.7) is then satisfied. Conditions (2.5) and (2.6) are reduced to 

da(o) a(1) 
v (1) r - -2 ( l+a(0) )  2 dr r a - 

O O"(~ + #[(1 
- V ( , , + 2  ~ q - - a ( i  ) ~ (--P(0)+2 Or ] 

da(1) = 0, 
dr 

a(o) 
a(o)ff 3 v - ~  1]+2A 1 + a(o ) + - - = 0 ,  (2.13) 

1 0v(i)r + Ov(1)o v(i)~ = 0, 0v(i)~ + ~ Ov(1)r v(1)-------E = 0 for r = 1 + a(0), 
r O0 Or r Or rsinO 0~o r 

where 0 is the angle between the vectors (0,0, 1) and (xa,x2,x3) (0 ~< 0 ~< a'), qo is the angle between the 
vectors (1, 0, 0) and (xl, x2, 0) (0 ~< qo < 2~r) (r, 0, and qo are the spherical coordinates); v(1)r , v(Do, and v(l)~ 
are the r, 0, e, nd ~ components of the vector v(1), respectively. Problem (2.3), (2.4), (2.6), and (2.13) has the 
solution 

( l + a ( ~  d[(l + a(o))Za(,)]IdT" + I cosO, 
V(1)r = r 2 W(1) r 

( '+?0 :o, v(1)0 = w(1 ) 1 sin0, v(i)~ 

cos0 ( d ~ )  0v(0)r 1 2 
p(1) =w(1)(l +a(o)) r2 e-d-~T+a rcosO+r 07" - 2  v(0)r; 

(2.14) 

w0)  = w(Dk. (2.15) 

Here ,(.~ wo) = ~ e ~ + a (1 + a(o))2; 

7" 

([ 1 da(o)] [ l(l+a(o))~v)+ifd7-} aO---L + 7 (1 + ~(o)) - -~C,  ,,-=,-.. - a0)  = (1 + a(0)) 1 + a(0) ~ . .  

[ i{ o(o, 
r** is a constant, f = ~  - 2 \  dr  ) l + a ( 0 ) ) l  

Thus, X(1) = -a(1),  and the solution (2.14) and (2.15) of problem (2.3), (2.4), (2.6), and (2.13) is a solution 
of problem (2.2)-(2.7). 

According to (2.12), the quantity f is a periodic (with period 1) function of 7-. The quantity a(x ) must 
be a limited function of 7". This condition is satisfied if and only if the following relation is satisfied: 

r+l 
i fdT- = (2.16) 0. 
T 

According to (2.12) and (2.16), we have 

Cl C35'+2 + C2 C3~t "{- c3C 37-I = c4, (2.17) 

Cl = 

r+l .. 2 r-I-1 r+l 
i ( ~ )  dT; C2= # -- 2)~; C3 = 2)~ i h-ldT; c4 =it i h-aTdr 
T r T 

I" 

1 

T* 

where 
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The left-hand side of (2.17) is equal to zero at C = 0; for C > 0, it is positive and infinitely increases 
monotonically with increasing C; the right-hand side of (2.17) is positive and does not vary with C. As a 
consequence, there is a positive value of C which satisfies relation (2.17), and this value of C is unique. Thus, 
the constant C is determined in the consideration of the first approximation. 

3. With the use of (2.11) and (2.15), we obtain 
T 

= Ao](W(o ) + R e w o ) ) d r  k + so, (3.1) S 
0 

where so is a constant. Relation (3.1) determines approximately the dependence of S on t. 
In particular, it follows from (3.1) that the bubble moves along the Z axis, and its motion consists of 

oscillations and the translation of the constant velocity 

where 

W = Wk, (3.2) 

3--T- & + (1 + a(0)) 2 &. 
f 

In accordance with (3.2), if g ~ 0, the bubble rises for 

W > 0 ,  

sinks for 

neither rises nor sinks for 

W < 0 ,  

w 

W = 0 , .  

rises faster than in the absence of oscillations and deformations of the vessel for 
r + l  / o)(1 > o ,  + + a(0)) 2 dr 
1" 

and rises slower than in the absence of oscillations and deformations of the vessel for 
r + l  

(~ ~-r + a)(1  + a(0))2 dr < a .  0 <  f dfi 

T 

in [1]. 

where 

4. Let us compare Eq. (3.2) obtained above for the velocity of bubble translation with that obtained 

Let g = 0 and 

(w) = 

According to (3.1), (3.2), and (4.1), we have 

r + l  

wdr .  
T 

(w) ~ Re(w)R e for Re ~ 0 (and constant K, e, )% and #), 

(4.1) 

(4.2) 

1 

J dr a(o ) d r k -  - - W .  AoRe 
T 

(4.3) 
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From (4.3), it follows tha t  

(W)Re "" K(W)K,Re at 1( ~ 0 (and constant Re, ~, A, and #), 

where 

(4.4) 

1 OO 

(W)K,I~ = ~ r  ~ p~umk (4.5) 
r a = l  

(p* are the constants tha t  are complex-conjugated with p,n). It is obvious from (4.5) that  

(W)K,R e '~ 8(W)e,K,R e at ~ ~ 0 (and constant Re, K, A,/~), 

where 

(4.6) 

OO 

(wh,K, Ro = rteal ~ * pmu~k. 
r n = l  

Accord,ng to (4.2), (4.4), and (4.6), the relation (w} --. ReKe(w), ,h. ,R e is satisfied for e --* 0 (and constant 
Re, K, A, and #), K --+ 0 (and constant Re, ~, A, and/~), Re -~ 0 (and constant K, e, A, and #). In [I], the 
expression (Ao/T)e~bk for the velocity of bubble translation was obtained. According to [i], the quantity 
r is the main term r162 of the expansion of (w) for ze = (K/Re)  ~ 0 (and constant  Re, r A, and 
/~) and for r --+ 0 (and constant  Re, ~e, A, and it). It is easy to see that  the main term of the expansion of 
e~e(w)~e,, for Re --* 0 (and constant K,  r A, and #) coincides with ReKe(w),.K,R~. This gives a basis for 
considering tha t  the compared expressions for the velocity of bubble translation are in accordance with each 
other. 

5. The  investigation presented allows one, in particular, to draw the following conclusion. If oscillations 
and deformations of the vessel are such that  the bubble neither rises nor sinks, then the bubble can move 
in any prescribed direction owing to additional oscillations of the vessel (along the properly oriented axis). 
Thus, the phenomenon of predominant ly  unidirectional motion of a gas bubble in a vibrating liquid can be 
understood in a wider sense tha t  the bubble moves in any prescribed direction under the  action of oscillations 
and deformations of the vessel both in the presence and in the absence of gravity. 
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